Super thin current sheets of electron scales observed in planetary magnetotails

E. E. Grigorenko¹, M.V. Leonenko¹, L.M. Zelenyi¹, H.V. Malova^{2,1}, E.A. Kronberg³

[1] Space Research Institute of Russian Academy of Science, Moscow, Russia
[2] Scobeltcyn Institute of Nuclear Physics, MSU, Moscow, Russia
[3] LMU, Munich, Germany

Workshop "Solar Influences on the Magnetosphere, Ionosphere and Atmosphere" 13 – 17 September, 2021, Primorsko, Bulgary

Thin Current Sheets (TCSs) are general structures in planetary magnetotails

The cross-tail CS is observed in both types of magnetosphere.

The Earth: the cross-tail TCS is the main region of magnetic energy conversion, usually observed during substorm growth phase (e.g. Sergeev et al., 1993; Baker et al., 1996; Nakamura et al., 2006; Runov et al., 2008)

Mars: the cross-tail CS separates the tail lobes with opposite polarity of the magnetic field. It has been identified as a main ion escape channel at Mars (e.g., Yeroshenko et al., 1990; *Dubinin et al.*, 1993; Fedorov et al., 2006; 2008; Barabash at al., 2007; DiBraccio et al., 2015; Grigorenko et al., 2017). Signatures of energy conversion via magnetic reconnection were reported recently (e.g. Harada et al., 2015; 2017; Hara et al., 2017)

One-spacecraft observations (e.g. in the Mars's magnetotail)allow estimation of 1D Electric current density as: $J_M = \Delta B_L / [L_N \cdot \mu_0]$,

 L_N is a half-thickness of the CS: $L_N = \int_{-1}^{t^2} V_N dt$

In the Earth's magnetotail four-point Cluster and MMS observations allow the precise calculation of 3D electric current density by **curlometer technique**:

$$J_{i3j} = \frac{\Delta B_{3i} \cdot r_{3j} - \Delta B_{3j} \cdot r_{3i}}{\mu_0 \cdot (r_{3i} \cdot r_{3j})}$$

The minimal characteristic scale of Cluster tetrahedron is ~ a few hundreds km (~ ρ_P). Cluster can observe ion-scale Current Sheet.

The characteristic scale of MMS tetrahedron ~ 15 km (a few ρ_e)

In **burst mode** the magnetic field is measured at **128 samples/s** 3D electron velocity distribution function (~ 100 eV – 30 keV) is measured at **30 ms** resolution

MMS is a perfect tool to study electron-scale STCS in the Earth's magnetotail.

In spite of the different mechanisms of the Earth's and Martian magnetospheres formation the similar features are observed in their cross-tail CSs

However, these observations cannot detect the strong super thin current layer at the center of the CS produced by electrons at electron kinetic scale.

MAVEN observations of Electron-scale Super Thin Current Sheets (STCSs) in Mars's magnetotail

Three layers of embedding:

(Grigorenko et al., GRL. 2019)

Electron STCS: $L_{STCS} \sim 2 \text{ km}$, $J_{STCS} \sim 85 \text{ nA/m}^2$ Proton TCS: $L_1 \sim 15 \text{ km}$ ($\rho_p \sim 20 \text{ km}$), $J_{TCS} \sim 34 \text{ nA/m}^2$ Thick CS: $L_2 \sim 50 \text{ km}$, J ~ 13 nA/m²

MMS observations of STCSs during the growth phase of substorm

Strong CS flapping

High-velocity plasma flow reversal

Multiple bipolar B_Z variations (magnetic islands) with STCSs (marked by red dots)

Spikes in the electric field (tens mV/m)

 J_{r} Spikes in the electric current density J_{z} (tens of nA/m²)

(Leonenko et al., JGR, submitted)

Reconstruction of the spatial structure of the STCS

Electron current $J_{\gamma} = e \cdot n_{e} \cdot V_{\gamma_{e}}$ and components of the pressure tensor were calculated **separately** for two electron populations:

- 1) magnetized electrons ($W_e < 1.2 \text{ keV}$) and
- 2) unmagnetized electrons ($W_e > 1.2 \text{ keV}$)

The electric current in the STCS is carried by the **unmagnetized electrons and the stress balance** is supported by **the gradient of off-diagonal components** of their pressure tensor

Periodic disruption and formation of the electron-scale STCSs?

Conclusions

- MAVEN and MMS observations revealed the Super Thin Current Sheets (L_{STCS} ~ a few kilometers ≤ a few ρ_e) embedded into the cross-tail current sheet in the Mars's and Earth's magnetotail
- In STCSs the current is carried by unmagnetized electrons and stress balance is supported by off-diagonal terms of their pressure tensor
- In the STCSs the higher energy electrons carry the current, while the low-energy electrons support the stability of the STCS

This work was supported by Volkswagen Foundation (grant Az 97 742)