Solar Influences on the Magnetosphere, Ionosphere and Atmosphere *Primorsko, Bulgaria, from 13 to 17 September 2021*

Long-Term Atlantic Multidecadal Oscillation Driven by Solar Harmonics

Yavor Chapanov

Climate, Atmosphere and Water Research Institute, Bulgarian Academy of Sciences, Bulgaria

OBJECTIVES

Determination of common solar and AMO cycles

USED DATA

Total Solar Irradiance (TSI)
Atlantic Multidecadal Oscillation

METHODS

Partial Fourier approximation + Method of Least Squares; FFT

RESULTS

Decadal and centennial common cycles of AMO and TSI variations.

Solar Influences on the Magnetosphere, Ionosphere and Atmosphere, Primorsko, Bulgaria, 13 to 17 September 2021

AMO data location

TSI and AMO Data

- 1200-year long time series.
- Reconstructed by principal component regression method of 46 annually-resolved terrestrial proxy records. Region 30N-80N, 100W-35E.
- Irradiance from 850 to 1609 is extension of NOAA CDR v02r02 using Roth & Joos (2013) TSI from cosmogenic 14C with added 11.0 year cycle

Time series spectra

Common long-period parts

Solar Influences on the Magnetosphere, Ionosphere and Atmosphere, Primorsko, Bulgaria, 13 to 17 September 2021

Solar influence on centennial cycles of AMO variations

Solar influence on centennial cycles of AMO variations

Solar influence on decadal cycles of AMO variations

Solar influence on decadal cycles of AMO variations

CONCLUSIONS

- The centennial and decadal cycles of Atlantic Multidecadal Oscillation are derived from 1200-year time series by the method of Partial Fourier Approximation with accuracy better than 0.008°C. These cycles are compared with the corresponding TSI cycles, derived by the PFA Method with accuracy better than 5mW/m².
- Good agreement exist between the TSI and AMO cycles in 8 narrow frequency bands with periods 48.3-50.4; 58-61; 64.4-68.2; 72.4-77.3; 105-116; 116-129; 145-166; 193 -232 years

Project "PRIANTROPO"

The study is supported by the National Science Fund of Bulgaria, Contract KP-06-N34/1 /30-09-2020 "Natural and anthropogenic factors of climate change – analyzes of global and local periodical components and long-term forecasts"

Thank you for your attention!

Yavor Chapanov yavor.chapanov@gmail.com

